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The state-space method is used to investigate the complete x- and y-relative observability of linear 

stationary singularly perturbed (LSSP) systems. Criteria, necessary conditions and sufficient conditions, 

phrased in terms of matrix ranks, are obtained for the observability; they involve the solutions of the 

defining equations, which are recurrent algebraic matrix equations. Duality principles are established 

between the LSSP observed and the control systems with coefficients of varying scales, the LSSP 

observed systems and LSSP control systems, and the governing equations for the observed and control 

systems. An example is given. 

1. STATEMENT OF THE PROBLEM. DEFINITIONS 

SUPPOSE the behaviour of a moving object is described by a linear stationary singularly 
perturbed (LISP) system of differential equations 

i(t) = A&) + A,y(r) 

~~)i(0 = A,x(t) + A,&), t 2 to (1-l) 

xeRn’, ycRnz, 0<pdp”4 1 

where p is a small positive parameter and 4 (i=l, 2, 3, 4) are constant matrices of ,the 
appropriate orders. Physically speaking, p represents all the small parameters for which the 
dimensions of the state space Q of system (1.1) are n, + n, : Q c R\+*, &I !? {col(x, y): x E R”‘, 
y E R*]. When p= 0 the variable y is no longer a state vector and the dimensions of system (1.1) 
decrease to n,. 

We will assume that as a result of the current initial state {x(t,), y(t,,)} and parameters p E (0, 
~(“1 a transient ~(t, cl>, y(t, cl) of system (1.1) has begun. Let us also assume that neither the 
initial state {x(t,), y(t,)} nor the trajectory [~(t, p), y( t, p)) are accessible to direct measurement. 
The observer, over a time interval T = [to, tl], can measure the output vector-valued function 
w(r) of a measuring device, which is governed by the rule 

w(f) = 4x0, CL) + 4yWL), t 6 T 

~E(OJ.L~], weRn3, n,Qn,+% (1.2) 

where, if n, c n, + n, the (TI, + n,) x (n, + n,) matrix 114, D2 11 iS singular. 
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The observed system (1.1) with output function (1.2) will be referred to as the LSSP observed 
system (LSSPOS). 

The problem of complete (x-, y-relative) observability. Given an LSSPOS (l.l), (1.2) it is 
required to find conditions under which, given measurements w(t), t E T, one can uniquely 
reconstruct the initial state {x(&J, y(t,,)} (the component x(t,), and the component y(t,,) of the 
initial state (x(&J, y&)}) of system (1.1) that, for a given p E (0, uO] produces the given output 
(1.2). 

Definition 1. The LSSP system (1.1) is completely (x-, y-relatively) observable by output (1.2) 
in T = [t,,, t,] if its problem of complete (x-, y-relative) observability is solvable for any initial 
state (x(t,,), yft,)} E R”lf5, p E (0, ~‘1. 

The aim of this paper is to find the conditions for the observability of a LSSPOS (l.l), (1.2) 
in terms of the matrices 4 (i = 1, 2,3,4), Dj (j = 1, 2) of the system. 

2. THE GOVERNING EQUATIONS OF THE OBSERVED SYSTEM 

To formulate the conditions for the observability of system (1.1) (1.2) we define n, x (n, + n,) 
matrices XL, n, ~(4 +n,) matrices Y,‘, and n3 x(n, +n,) matrices I%‘; (i, k = 0, 1, 2, . . .) as 
follows: 

X; & IlXg, i = 1,211, Xi, E I?““‘, Xi, q RnlXnz 

Y; & II I$;, j = 1,211, $, E Rnzx”‘, & E Rn2X”2 (2.1) 

The presence of the subscript j (j = 1, 2) in the matrices ‘X& Yij, WLj is due to the different 
scales of magnitude of the variables x, y in system (1.1) (1.2), indicating the existence of motions 
with two quite different velocities i(t), 9(t). 

We establish a correspondence between the vector-valued functions x(t), y(t), w(t) and 
matrices Xi, Y,‘, WL, stipulating that 

(2.2) 

where the subscript k + j (j = 0, 1) in the matrices Xcj, Yi$ W,!!: represents the jth derivative 
of the vectors x, y, w and the superscript i + i (I = 0, 1) represents the fth degree of the factor u 
multiplying the derivatives i(t), L(t). Then by (2.2) the system of differential equations (1.1) is 
transformed into an algebraic system of matrix equations, which are recurrent in i, k 

Xi+’ = A,X; +A,Y,’ 

Y,!!: =A,Xi+A,Yi, k=0,1,2 ,..., i=O,1,2 ,..., k-l 

and the output corresponds to an algebraic matrix equation, also recurrent in i, k 

Wi =D[Xi+D2Yi, k=0,1,2 ,..., i=O,1,2 ,..., krl 

(2.3) 

(2.4) 

To ensure that (2.3) and (2.4) have a unique solution, we set 
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By analogy with [I], the recurrent equations (2.3) and (2.4) will be referred to as the defining 
equations of the LSSPOS (l.l), (1.2), and the matrices X&, Yij, IV& (k= 0, 1,2, . . , ; i=O, 1, 
2 k - 1; d = 0, 1,2) computed from (2.3), (2.4) with initial conditions (2.5) will be referred to 
ai’the) components of solutions {Xi, Yi, I+$ (k=O, I, 2, _ . . , i=O, 1,2,. . . , k-l) of the 
gover~ng equations of system (2.3)-(2.5). 

By introducing the governing equations (2.3) and (2.4) we have made it possible to 
investigate, instead of the differential system (1.1) with output (1.2), a system of algebraic matrix 
equations, thus obtaining effective conditions for observability of the LSSPOS (l.l), (1.2) 
expressed in terms of the parameters 4 ($ = 1,2,3,4), ar (j = 1, 2) of the system. 

The governing equations may be derived in another form (albeit related to (2,3)), which yields 
different algebraic co~itions for observabi~ty. These new equations have certain advantages 
over (2,3) and (2.4). 

We express the LSSPOS (1.1) and (1.2) in the state space n c R”L4ti as a system 

i(t) = A(p)z(r), 2 E R”‘+“* (2.5) 

w(r)=&(t), WERff3* reT, pEfO,#tQ WI 

which depends, singularly as u + 0, on the parameter p. In these equations 

Define matrices I;r, 4 I I E,,, , 0, ._ II, H, 4 II O,+,,j ) E II. Then, obviously, the problem of the 
complete (x-, y-relative) observability of system (l.l), 11.2) is equivalent to the problem of the 
complete (If,-, H,-relative) observability for system (2.6) by output (2.7). By analogy with [l], 
the governing equation for system (2.Q (2.7) for any p E (0, p,] is 

Z k+, = A(v)Z,, Z, = En,+n2, k =%I,%... (2.9) 

wk = DZ,, Z, c R’“’ +‘2 Jxh +n2 ), @f, E $3 x(nt -2 ) (2.10) 

Lem 1, The solutions 2, of the governing equation (2.9), for each k (k = 0, 1,2, . . .) are 
related to the solutions XL, YL of the governing equations (2.3) as follows: 

(2.11) 

The proof proceeds by induction, relying on the equalities X:z; = 0, y,“,, = 0, which follow 
from (2.5). 

Lemma 2. For every k (k = 0,1,2 t * e .) the matrices W, of (2.10) and WL of (2.4) are related as 
foIlows: 

Wk = i $+$j-m (2.12) 
m=O 

The proof is by induction on k, relying on formulae (2.10), (2.4) and Lemma 1, 
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3. ADJOINT CONTROL SYSTEMS AND THEIR GOVERNING EQUATIONS 

Together with the observed system (2.6), (2.7), with its singular dependence on u as p + 0, let 
us consider the adjoint control system 

i(t) = -A’(p)z(t)+ D’u(t), t E T (3.1) 

which, by (2.8), may be written as 

I=-A;x(t)-(Aj/~~)y(r)+D;u(t) 
(3.2) 

j(t) = -A;x(t) - (A; / p)y(r)+ &u(t), t E T 

and is a control system with differently scaled coefficients: “small” coefficients -A{, -4 and 
“large” ones -Al/p, -A,‘Ip. Clearly, the control system (3.2) is adjoint to the observed system 
(l.l), (1.2). 

Defining matrices Xfji E ZPXn3, Yk(cji E R”2X”3 (i, k = 0, 1, 2, . . . ), we set up a correspon- 
dence between the vector-valued functions x(t), y(t), and the matrices Xtr, Yf)j, governed by 
the rule 

(3.3) 

where the subscript k + j (j = 0, 1) in the matrices XLy, Yi!y corresponds to the jth derivative 
of x(r), y(t), and the superscript i +I (I = -1, 0) to the Ith degree of the factor u multiplying the 
variables x(t) and y(t) (compare with (2.2)). Then, by (3.3), the system of differential equations 
(3.2) determines a system of i, k-recurrent algebraic matrix equations 

= _A;xjc)i _ A;yLc)i-’ 

Yccfi =-A;XFJi -AiYk(c)i-‘, k+l k=0,1,2 ,..., i=O,1,2 ,..., k 
(3.4) 

which we shall solve for initial data 

X0 
(‘)O=D;, Xf)i=On,xn3, i<Ovk<OVi<k 

(3.5) 
Yo (‘)‘=D;, Y~c)i:=0,zxc7, i<Ovk<Ovi>k 

To establish the relationship between Eqs (2.3), (3.4) and their solutions, we define, for every 
quadruple of indices i ,j, k, I, matrices of order (n, + n,) x (n, + n,) 

z’i p xl, 
kl 

// I r,’ ’ 
Zi =ll.z&, n=0,1,2,...,q +n2 -111 

where Xi, y;i are the components of the solutions of the governing equations (2.3), (2.5), and 
matrices of order (q + nz) x n, 

z$W A 
x:)-i 

= /I H Pi 

, zp =Ilz~p, n = 0,1,2,...,n, +n* -III 

where Xfji, Y;@)j a re the components of the solutions of the governing equations (3.4), (3.9, 
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and zL, zg are the columns of the matrices Zz,, Zz”, respectively. Form the set 

Z={&,z~~, n=0,1,2 ,..., n,+n,-1; m=0,1,2 ,,.., n,-1; i,j,k,l=0,1,2 ,... ] 

and define a linear operator L: 2 + 2, L = E,,, - A(p)exp(-p,,), where pjkl 4! Cl3 li3,~,& is the 
differentiation operator, exp(-pik,) a shift operator defined on the indices: exp(-pik,)zf: = zi&. 
Then the operator adjoint to L, .L* : 2 + Z, may be written as 

L* = E,,, +,,Z + A’(CL)exp(-Pjkr ) 

The governing equations (2.3) may obviously be written in operator notation as follows: 

(3.6) 

~G;,~+, ) = O,“, +#I2 )x(n, +9) 

and the governing equations (3.4) as 

L* (C);:+I ) = O,,, +n2)xn3 

(3.7) 

(3-S) 

Comparing Eqs (3.7) and (3.8), we see that system (2.3) is the adjoint to system (3.4), and we 
shall accordingly refer to the recurrent equations (3.4) as the adjoint governing equations of 
system (l.l), (1.2) and to Xt>, Yf)’ (i, k=O, 1, 2, . . .) evaluated by (3.4), (3.5), as the 
components of the adjoint governing equations (3.4), (3.5). 

4. THE OBSERVABILITY OF LINEAR TIME-INDEPENDENT SINGULARLY 
PERTURBED SYSTEMS 

We will now formulate the observability conditions for the LSSPOS (l.l), (1.2) in terms of 
the components of the solutions of the governing equations (2.3)-(2.5). To do this we consider 
the following matrices of order n,(n, + n,) x (n, + n,) 

k m k-m m:op wk (4.1) 
,a.., n +?I,-1 , k=0,1,2 ,...,q +n, -1 

whose elements are the components of the solutions of the governing equations (2.9), (2.10) and 
(2.3)-(2.5), respectively. We shall call Q(p) the observability matrix of system (l.l), (1.2). 

Lemma 3. The matrices Q’(p) and Q(u) have equal ranks 

rankQ’(u) = rankQ(lr), u E 64~~1 

The proof, which is obvious, follows from the form (4.1) of the matrices Q’(j.t), Q(p) and 
from Lemma 2. 

Theorem 1. An LSSP system (1.1) is completely observable by output (1.2) if and only if the 
observability matrix Q(p) is of maximum rank 

rankQ(u)=n, +n2, u~(O,u’l (4.2) 

The proof follows from the representation of system (l.l), (1.2) in the form (2.6), (2.7); 
confining our attention to p E (0, p”], one then uses the criterion [l] rank Q’(p) = n, + n2 for the 
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complete observability of system (2.6), (2.7), and Lemma 3. 

Remarks. 1. If system (l.l), (1.2) is completely observable for some p* ~(0, ~‘1, a number pL* GP* 

obviously exists such that (1.1) and (1.2) are completely observable for all u E (cl*, p*]. 
2. Obviously, if (4.2) is true for all l.t E (0, ~“1, then system (1.1) is completely observable by output (1.2) 

for all p E (0, p”]. 

Using a result in [2] concerning the relative observability of system (2.6), (2.7) for u E (0, p”] 
we can state the following corollary. 

Corollary 1. The LSSPOS (l.l), (1.2) is x-relatively (y-relatively) observable if and only if 

rank Q(p) = rank H, =IlE,,,0,,X,211, CLW!.h 

rank Q(u) = rank HY /I II Q(u) ’ 

To formulate the 
elsewhere.? 

next theorem we use a lemma, whose complete proof may be found 

Lemma 4. suppose we are given n x I matrices Mi (i = 0, 1,2, . . . , n s Z) and a number k 
(k = 0, 1,2, . . .). If there exists m (0 G m G k) for which rank M, = n, then there exists uL, > 0 
such that, for all u E (0, uJ 

rank $ piMi = n 
i=o 

Define matrices P of order n&r1 + q) x(n, +n,), Q1(u) of order n,(n, + n,) x n,, and Q&L) of 
order n&r, + n,) x n2, as follows: 

$*-m+‘2 
k k-m 

m:Oumwki 
n, +n* -1 k=0,1,2, . . . . “* +r$ -1 

k 

Q,(p) 4 m~opmw,*;“’ 

k=0,1,2, . . . . n, +n2 -1 

Using Theorem 1, Corollary 1 and the fact that matrix rank is preserved under multi- 
plication of rows and columns by a non-zero number, as well as Lemma 4, we can now state 
sufficient conditions for the observability of system (l.l), (1.2), without referring to the 
parameter u. 

Theorem 2. Suppose that for some 4, 1, (ii = 0, 1, 2, . . . , n, + n, - 1, i = 1, 2) there exists m 
(m=O, 1,2 ,..., n, + n2 + max(l,, Z,) - 1) such that 

rankP=n,+% 

[raukP=rauk~~~i, rankP=rankl~~I ) 

TKOPEIKINA T. B. and MANTSEVICH 0. B., On the controllability of a type of linear time-dependent singularly 

perturbed systems with delay. Degenerate systems. Preprint No. 24(474). Inst. Mat. Akad. Nauk Belarusi, Minsk, 1991. 
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Then there exists p*>O such that the LSSPOS (l.l), (1.2) is completely (x-, y-relatively) 
observable for all p E (0, cl*]. 

Theorem 1 and Corollary 1 imply the following theorem. 

Theorem 3. A necessary conditiori for the LSSPOS (l.l), (1.2) to be completely (x- and y- 
relatively) observable is that 

rankQ,(p)=n,, rankQ,W=n2, CLE(O,P~I 

(rank QI (cl) = nl, rank Q2 (CL) = n2 1 

In order to check the given system (l.l), (1.2) for observability in practice, it is more 
economical to use other conditions, requiring less computer resources. To that end we will 
derive observability conditions for the system in terms of solutions of the governing equations 
(3.4) and (3.5). 

Define a matrix of order n3(q + n,) x (4 + n,) 

Q'"'(p) 4 I ; pm(Xymy, m~opm(Y;"-m)t 
m=O 
k=0,1,2, . . . . n,+nz-1 

(4.3) 

where Xf)‘, Yfji are the solutions of the governing equations (3.4) and (3.5). We will call 
Q@$_L), like the matrix Q(p) of (4.1), the observability matrix of system (l.l), (1.2), since Q”(p) 
is the transpose of the observability matrix (Q@)(p)) of system (3.2), which is the adjoint of 
system (l.l), (1.2). 

Theorem 4. The LSSP system (1.1) is complete (x-, y-relatively) observable by output (1.2) if 
and only if 

rankQCC)(p)=n, +n2, pe(O,p’] (4.4) 

The proof, which is omitted here, is analogous to that of Theorem 1, using the relative 
observability criterion established in [2] for systems (2.6) and (2.7) for p~(0, p”], as well as 
formulae (2.9, (3.4), (3.5) and (4.3). 

The necessary and sufficient conditions for the observability of system (l.l), (1.2), expressed 
in terms of solutions of the governing equations (3.4) and (3.5) are literal repetitions of 
Theorems 2 and 3, with II WiI, Wiz II replaced by II (Xfji, Yk(cji)‘II, respectively. 

The reader will observe that verification of the observability conditions (4.2), which are 
formulated in terms of the components WL of the solutions of the governing equations (2.3), 
(2.4) and (2.5), requires working out Eq. (2.3) n, + n, - 1 times and Eq. (2.4) n, +n, times; this 
requires a total of 

[ 

l+(n, +n2) 
2 

(n,+nz+ns)-1 (n,+n*)2(2n,+2n2-1) 1 
multiplication and addition operations. To verify conditions (4.4) of Theorem 4 in terms of the 
solutions Xf)‘, eji of the governing equations (3.4) and (3.5), it is necessary to work out the 
two equations of (3.4) n, + n, times, that is, to carry out 

[ 

l+(q +It2) 
2 

(n,+*)-1 +(n,+n2)(2q+2n2-1) 1 
multiplication and addition operations. Since by assumption n3 G n, +n,, when n, and n2 are 
large this procedure considerably reduces the demands on computer time and memory in a 
computerized analysis of LSSPOS such as (1.1) and (1.2) for observability. 
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5. THE DUALITY OF SINGULAR OBSERVED AND CONTROL SYSTEMS 

Together with the LSSPOS (l.l), (1.2), let us consider the adjoint system of equations (3.2) 
with differently scaled coefficients and initial data 

x(re)=xa, y@,)=yo, x0 E Rn’, y. E R”* (5.1) 

Suppose that over the interval T = [t,, tI] we have a class U(t) of continuous Q -vector 
functions u(t), henceforth called admissible controls: u(t) E U(t). 

The complete (x-, y-relative) controllability problem. Determine the conditions under which, 
for any (n, +n,)- vectors (x0, yO), (xi, yl) and l.t E (0, CL’], an admissible control u(t) exists such 
that the corresponding solution [~(t, u), y(t, p)] t E T (component x(t, p) and component 
y(t, p) of the solution), of system (3.2), (5.1) will satisfy the condition x(r,, p) = x,, y(t,, p) = y, 
(X(k CL)=% Y(G, lJ)=y1). 

Definition 2. System (3.2), (5.1) is completely (x-, y-relatively) controllable in T if its 
controllability problem has a solution for any (x0, yo) E R”‘+*, (x1, y,) E R-‘%, p E (0, ~“1. 

Theorem 5 (first duality principle). The LSSPOS (1.1) and (1.2) is completely controllable if 
and only if the linear time-independent system with differently scaled coefficients (3.2), (5.1) is 
completely controllable in T. 

The proof follows directly from the representation of the observed system (l.l), (1.2) in the 
form (2.6), (2.7), the representation of the control system (3.2) in the form (3.1), and the usual 
duality principle [3] for the resulting linear time-independent systems for u E (0, u’]. 

An obvious corollary of Theorems 1,4 and 5 is the following. 

Corollary 2. If 

or 

rank 

i P”(w,:-“) 
m=O 

k=0,‘1,2 ,..., n, +n* -1 

i P~~~;~-m)’ 
m=O 

i pmXp)k-m 

m=O 

k=0,1,2,:..,n,+n;l-1 

i pmyk(c)k-m 

m=O 

then system (3.2), (5.1) is completely controllable in T. 
There is another duality principle for the controllability and observability of LSSP systems. 

To establish it, we consider, together with any LSSPOS (l.l), (1.2), the LSSP control system 
(LSSPCS) 

i;(t) = -A;x(t) - A;y(t)+ l+(t), x E Rn’ , y E Rn2, 

(5.2) 
CLjr(t) = -A;?(t) - A;y(t) + D;u(t), u E Rn’, t E T, p E (O,/L’] 

with initial data (5.1). One can formulate the complete (x-, y-relative) controllability problem 
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for the LSSPCS (5.2), (S.l), in the same way as for system (3.2), (5.1). To obtain conditions for 
the controllability of system (5.2), (S.l), we define matrices Xi+ E Rq+, I& E R*x”3 (i, k = 0, 1, 
2 . .) and set up a correspondence between the vector functions x(r), y(r) and matrices X&, 
l& according to the rule (2.2). Then, by (2.2), the system of differential equations (5.2) will 
correspond to an algebraic system of (i, k)-recurrent matrix equations 

Xi (c)k+1 = -A;X:,,, -A;$,, 

(5.3) 
y;c;:+, = -z‘t;x;‘,,, - A;I&k, i,k = 0,1,2 ,... 

which we shall solve with initial data 

XEjo =D;, X:c,, =O,,_, i>kv(i<O)v(kcO) 

$&I = O;, $c,k = ‘nZxn3 * i>(k+l)V(iSO)V(k=O) 
(5.4) 

We shall call Eqs (5.3) the governing equations of the LSSPCS (5.2) and (5.1), while the 
matrices X&, Y& (i, k = 0, 1, 2, . . .) given by (5.3) and (5.4) will be called solutions of the 
governing equations (5.3) and (5.1). Since system (5.3) may be written in terms of the adjoint 
operator (3.6) 

L*(z;‘$‘,,,,+,) = O,,, +n2)xn3 ’ ':";)kl ii 

it follows that the governing equations (5.3) of the LSSPCS (5.2) are the adjoints of the 
governing equations (2.3) of the LSSPOS (1.1). 

The relationship between the solutions Xl+, l& of (5.3) and the solutions Xf)‘, YfN of (3.4) 
is established by the following lemma. 

Lemma 5. For every i, k (i, k = 0, 1,2, . . .) the solutions X&, of the governing equations (5.3), 
(5.4) and the solutions X, , (‘ji YfJi of the governing equations (3.4), (3.5) satisfy the relations 
X&C = XfJi, q;; = *N. 

The proof is bbtained by comparing the governing equations (5.3) and (3.4). 

Theorem 6 (second duality principle). The LSSPOS (1.1) and (1.2) is completely observable 
if and only if the LSSPCS (5.2) and (5.1) is completely controllable in T. 

Proof. By a criterion proved in [4] 

m=O 

rank 

k 

c CL 
m k-m+1 

qc,k 
m=O 

k=0,1,2 ,...( “, +n,-1 =9 +nz> CLW9P01 (5.5) 

for the completely controllability of the LSSPCS (5.2), Lemma 5 and the fact that the ranks of a 
matrix and its transpose are equal, it follows that condition (5.5) is equivalent to condition (4.4) 
of Theorem 4. The theorem is proved. 

Corollary 3. A linear time-independent system with differently scaled coefficients (3.2) is 
completely controllable in T if and only if the LSSPCS (5.2) has that property. 

In other words, systems (3.2) and (5.2) are equivalent in the sense of controllability. 
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6. EXAMPLE 

The following is a linear stationary singularly perturbed model of the rotation of an elastic link in an 
electromechanical manipulatory robot [5] 

i(t) = y(r). pj’(t) = -y(r)+u(t), p E (O,p’], x E R, ye R, u E R (6.1) 

Let us consider the observation of this system by measuring the output function 

w(t)=ux(r)+by(r), WE R, r~T=[f~,f~] (6.2) 

where u and b are parameters and u is a given control, II u 116 1. 

Problem. Determine for what values of the parameters a and b the LSSP system (6.1) is completely 

observable by output (6.2). 
Express system (6.1) in the same form as (l.l), where n, = n2 = IE~ = 1, A, = 0, A, = 1, A, = 0, A4 = -1, 

B, = 0, B, = 1, DI = a, D, = b. Using the governing equations in the form (2.3), we have 

x,0 =111,011, xp =110,111, x; =110,011 

Y,o =110,111, yp =110,011, Yf =llO,-111 

w; =lla&l, W; =llO.all, W,’ =llO.-bll 

Then the observability matrix Q(p) of (4.1) for system (6.1), (6.2) is 

whence it follows by Theorem 1 that for a # 0, b z 0, and all f.t E (0, b/a- E), where E is any number, ~41, 

or for a#O, b=O and any ~E(O, p”], we have rank Q(p) = 2, i.e., system (6.1), (6.2) is completely 
observable in T. For a=O, b#O, the system is not completely observable, but for lI =0, I, =l, m=O it 
follows from Theorem 2 that it is y-relatively observable for all p E (0, ~“1, since in that case Wd: = 0, 
W&=0, WA=O, wl:=-b and 

7. CONCLUSIONS 

We have proposed that the observability of the LSSP system (l.l), (1.2) be investigated by the 
state-space method. This method, which goes back to Kalman [3], requires neither the 
construction of an asymptotic expansion of the solutions of system (1.1) in powers of the small 
parameter p [6], nor the traditional condition det A., #O. The method treats the problem 
globally (in terms of p) and yields an effective criterion for the observability of system (l.l), 
(1.2), expressed in terms of solutions of the defining equations of the system. The latter 
constitute a system of recurrent algebraic matrix equations, derived in accordance with an 
explicit rule from the original observed system (l.l), (1.2). The singularity of system (1.1) 
enables one to formulate sufficient conditions for observability (Theorem 2) that do not involve 
the small parameter p. 
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